但是,如果老王回到了1750年,然后覺得被嚇尿是個(gè)很囧的體驗(yàn),于是他也想把別人嚇尿來滿足一下自己,那會(huì)發(fā)生什么?于是老王也回到了250年前的1500年,邀請(qǐng)生活在1500年的小李去1750年玩一下。小李可能會(huì)被250年后的很多東西震驚,但是至少他不會(huì)被嚇尿。同樣是250來年的時(shí)間,1750和2015年的差別,比1500年和1750年的差別,要大得多了。1500年的小李可能能學(xué)到很多神奇的物理知識(shí),可能會(huì)驚訝于歐洲的帝國(guó)主義旅程,甚至對(duì)于世界地圖的認(rèn)知也會(huì)大大的改變,但是1500年的小李,看到1750年的交通、通訊等等,并不會(huì)被嚇尿。
2.人工智能是個(gè)很寬泛的話題。從手機(jī)上的計(jì)算器到無人駕駛汽車,到未來可能改變世界的重大變革,人工智能可以用來描述很多東西,所以人們會(huì)有疑惑。
3.我們?nèi)粘I钪幸呀?jīng)每天都在使用人工智能了,只是我們沒意識(shí)到而已。John McCarthy,在1956年最早使用了人工智能(Artificial Intelligence)這個(gè)詞。他總是抱怨“一旦一樣?xùn)|西用人工智能實(shí)現(xiàn)了,人們就不再叫它人工智能了。”
因?yàn)檫@種效應(yīng),所以人工智能聽起來總讓人覺得是未來的神秘存在,而不是身邊已經(jīng)存在的現(xiàn)實(shí)。同時(shí),這種效應(yīng)也讓人們覺得人工智能是一個(gè)從未被實(shí)現(xiàn)過的流行理念。Kurzweil提到經(jīng)常有人說人工智能在80年代就被遺棄了,這種說法就好像“互聯(lián)網(wǎng)已經(jīng)在21世紀(jì)初互聯(lián)網(wǎng)泡沫爆炸時(shí)死去了”一般滑稽。
其次,你可能聽過“奇點(diǎn)”或者“技術(shù)奇點(diǎn)”這種說法。這種說法在數(shù)學(xué)上用來描述類似漸進(jìn)的情況,這種情況下通常的規(guī)律就不適用了。這種說法同樣被用在物理上來描述無限小的高密度黑洞,同樣是通常的規(guī)律不適用的情況。Kurzweil則把奇點(diǎn)定義為加速回報(bào)定律達(dá)到了極限,技術(shù)進(jìn)步以近乎無限的速度發(fā)展,而奇點(diǎn)之后我們將在一個(gè)完全不同的世界生活的。但是當(dāng)下的很多思考人工智能的人已經(jīng)不再用奇點(diǎn)這個(gè)說法了,而且這種說法很容易把人弄混,所以本文也盡量少用。
強(qiáng)人工智能Artificial General Intelligence (AGI): 人類級(jí)別的人工智能。強(qiáng)人工智能是指在各方面都能和人類比肩的人工智能,人類能干的腦力活它都能干。創(chuàng)造強(qiáng)人工智能比創(chuàng)造弱人工智能難得多,我們現(xiàn)在還做不到。Linda Gottfredson教授把智能定義為“一種寬泛的心理能力,能夠進(jìn)行思考、計(jì)劃、解決問題、抽象思維、理解復(fù)雜理念、快速學(xué)習(xí)和從經(jīng)驗(yàn)中學(xué)習(xí)等操作。”強(qiáng)人工智能在進(jìn)行這些操作時(shí)應(yīng)該和人類一樣得心應(yīng)手。
超人工智能Artificial Superintelligence (ASI): 牛津哲學(xué)家,知名人工智能思想家Nick Bostrom把超級(jí)智能定義為“在幾乎所有領(lǐng)域都比最聰明的人類大腦都聰明很多,包括科學(xué)創(chuàng)新、通識(shí)和社交技能。”超人工智能可以是各方面都比人類強(qiáng)一點(diǎn),也可以是各方面都比人類強(qiáng)萬億倍的。超人工智能也正是為什么人工智能這個(gè)話題這么火熱的緣故,同樣也是為什么永生和滅絕這兩個(gè)詞會(huì)在本文中多次出現(xiàn)。
現(xiàn)在,人類已經(jīng)掌握了弱人工智能。其實(shí)弱人工智能無處不在,人工智能革命是從弱人工智能,通過強(qiáng)人工智能,最終到達(dá)超人工智能的旅途。這段旅途中人類可能會(huì)生還下來,可能不會(huì),但是無論如何,世界將變得完全不一樣。
弱人工智能是在特定領(lǐng)域等同或者超過人類智能/效率的機(jī)器智能,一些常見的例子:
現(xiàn)在的弱人工智能系統(tǒng)并不嚇人。最糟糕的情況,無非是代碼沒寫好,程序出故障,造成了單獨(dú)的災(zāi)難,比如造成停電、核電站故障、金融市場(chǎng)崩盤等等。
而且創(chuàng)造強(qiáng)人工智能的難處,并不是你本能認(rèn)為的那些。
造一個(gè)能在瞬間算出十位數(shù)乘法的計(jì)算機(jī)——非常簡(jiǎn)單
造一個(gè)能分辨出一個(gè)動(dòng)物是貓還是狗的計(jì)算機(jī)——極端困難
造一個(gè)能戰(zhàn)勝世界象棋冠軍的電腦——早就成功了
造一個(gè)能夠讀懂六歲小朋友的圖片書中的文字,并且了解那些詞匯意思的電腦——谷歌花了幾十億美元在做,還沒做出來
一些我們覺得困難的事情——微積分、金融市場(chǎng)策略、翻譯等,對(duì)于電腦來說都太簡(jiǎn)單了
用計(jì)算機(jī)科學(xué)家Donald Knuth的說法,“人工智能已經(jīng)在幾乎所有需要思考的領(lǐng)域超過了人類,但是在那些人類和其它動(dòng)物不需要思考就能完成的事情上,還差得很遠(yuǎn)。”
讀者應(yīng)該能很快意識(shí)到,那些對(duì)我們來說很簡(jiǎn)單的事情,其實(shí)是很復(fù)雜的,它們看上去很簡(jiǎn)單,因?yàn)樗鼈円呀?jīng)在動(dòng)物進(jìn)化的過程中經(jīng)歷了幾億年的優(yōu)化了。當(dāng)你舉手拿一件東西的時(shí)候,你肩膀、手肘、手腕里的肌肉、肌腱和骨頭,瞬間就進(jìn)行了一組復(fù)雜的物理運(yùn)作,這一切還配合著你的眼睛的運(yùn)作,使得你的手能都在三維空間中進(jìn)行直線運(yùn)作。對(duì)你來說這一切輕而易舉,因?yàn)樵谀隳X中負(fù)責(zé)處理這些的“軟件”已經(jīng)很完美了。同樣的,軟件很難識(shí)別網(wǎng)站的驗(yàn)證碼,不是因?yàn)檐浖?,恰恰相反,是因?yàn)槟軌蜃x懂驗(yàn)證碼是件碉堡了的事情。
同樣的,大數(shù)相乘、下棋等等,對(duì)于生物來說是很新的技能,我們還沒有幾億年的世界來進(jìn)化這些能力,所以電腦很輕易的就擊敗了我們。試想一下,如果讓你寫一個(gè)程序,是一個(gè)能做大數(shù)相乘的程序容易寫,還是能夠識(shí)別千千萬萬種字體和筆跡下書寫的英文字母的程序難寫?
你可以輕易的描述圖形中透明或不透明的圓柱和3D圖形,但是電腦就看不出來了。電腦會(huì)描述出2D的陰影細(xì)節(jié),但是人腦卻能夠把這些陰影所展現(xiàn)的深度、陰影混合、房屋燈光解讀出來。
要達(dá)到強(qiáng)人工智能,肯定要滿足的就是電腦硬件的運(yùn)算能力。如果一個(gè)人工智能要像人腦一般聰明,它至少要能達(dá)到人腦的運(yùn)算能力。
用來描述運(yùn)算能力的單位叫作cps(calculations per second,每秒計(jì)算次數(shù)),要計(jì)算人腦的cps只要了解人腦中所有結(jié)構(gòu)的最高cps,然后加起來就行了。
Kurzweil把對(duì)于一個(gè)結(jié)構(gòu)的最大cps的專業(yè)估算,然后考慮這個(gè)結(jié)構(gòu)占整個(gè)大腦的重量,做乘法,來得出人腦的cps。聽起來不太靠譜,但是Kurzweil用了對(duì)于不同大腦區(qū)域的專業(yè)估算值,得出的最終結(jié)果都非常類似,是10^16 cps,也就是1億億次計(jì)算每秒。
現(xiàn)在最快的超級(jí)計(jì)算機(jī),中國(guó)的天河二號(hào),其實(shí)已經(jīng)超過這個(gè)運(yùn)算力了,天河每秒能進(jìn)行3.4億億。當(dāng)然,天河二號(hào)占地720平方米,耗電2400萬瓦,耗費(fèi)了3.9億美元建造。廣泛應(yīng)用就不提了,即使是大部分商業(yè)或者工業(yè)運(yùn)用也是很貴的。
Kurzweil認(rèn)為考慮電腦的發(fā)展程度的標(biāo)桿是看1000美元能買到多少cps,當(dāng)1000美元能買到人腦級(jí)別的1億億運(yùn)算能力的時(shí)候,強(qiáng)人工智能可能就是生活的一部分了。
也就是說現(xiàn)在1000美元能買到的電腦已經(jīng)強(qiáng)過了老鼠,并且達(dá)到了人腦千分之一的水平。聽起來還是弱爆了,但是,讓我們考慮一下,1985年的時(shí)候,同樣的錢只能買到人腦萬億分之一的cps,1995年變成了十億分之一,2005年是百萬分之一,而2015年已經(jīng)是千分之一了。按照這個(gè)速度,我們到2025年就能花1000美元買到可以和人腦運(yùn)算速度抗衡的電腦了。
至少在硬件上,我們已經(jīng)能夠強(qiáng)人工智能了(中國(guó)的天河二號(hào)),而且十年以內(nèi),我們就能以低廉的價(jià)格買到能夠支持強(qiáng)人工智能的電腦硬件。
1) 抄襲人腦
就好像你班上有一個(gè)學(xué)霸。你不知道為什么學(xué)霸那么聰明,為什么考試每次都滿分。雖然你也很努力的學(xué)習(xí),但是你就是考的沒有學(xué)霸好。最后你決定“老子不干了,我直接抄他的考試答案好了。”這種“抄襲”是有道理的,我們想要建造一個(gè)超級(jí)復(fù)雜的電腦,但是我們有人腦這個(gè)范本可以參考呀。
科學(xué)界正在努力逆向工程人腦,來理解生物進(jìn)化是怎么造出這么個(gè)神奇的東西的,樂觀的估計(jì)是我們?cè)?030年之前能夠完成這個(gè)任務(wù)。一旦這個(gè)成就達(dá)成,我們就能知道為什么人腦能夠如此高效、快速的運(yùn)行,并且能從中獲得靈感來進(jìn)行創(chuàng)新。一個(gè)電腦架構(gòu)模擬人腦的例子就是人工神經(jīng)網(wǎng)絡(luò)。它是一個(gè)由晶體管作為“神經(jīng)”組成的網(wǎng)絡(luò),晶體管和其它晶體管互相連接,有自己的輸入、輸出系統(tǒng),而且什么都不知道——就像一個(gè)嬰兒的大腦。接著它會(huì)通過做任務(wù)來自我學(xué)習(xí),比如識(shí)別筆跡。最開始它的神經(jīng)處理和猜測(cè)會(huì)是隨機(jī)的,但是當(dāng)它得到正確的回饋后,相關(guān)晶體管之間的連接就會(huì)被加強(qiáng);如果它得到錯(cuò)誤的回饋,連接就會(huì)變?nèi)酢=?jīng)過一段時(shí)間的測(cè)試和回饋后,這個(gè)網(wǎng)絡(luò)自身就會(huì)組成一個(gè)智能的神經(jīng)路徑,而處理這項(xiàng)任務(wù)的能力也得到了優(yōu)化。人腦的學(xué)習(xí)是類似的過程,不過比這復(fù)雜一點(diǎn),隨著我們對(duì)大腦研究的深入,我們將會(huì)發(fā)現(xiàn)更好的組建神經(jīng)連接的方法。
更加極端的“抄襲”方式是“整腦模擬”。具體來說就是把人腦切成很薄的片,用軟件來準(zhǔn)確的組建一個(gè)3D模型,然后把這個(gè)模型裝在強(qiáng)力的電腦上。如果能做成,這臺(tái)電腦就能做所有人腦能做的事情——只要讓它學(xué)習(xí)和吸收信息就好了。如果做這事情的工程師夠厲害的話,他們模擬出來的人腦甚至?xí)性救四X的人格和記憶,電腦模擬出的人腦就會(huì)像原本的人腦一樣——這就是非常符合人類標(biāo)準(zhǔn)的強(qiáng)人工智能,然后我們就能把它改造成一個(gè)更加厲害的超人工智能了。
2)模仿生物演化
抄學(xué)霸的答案當(dāng)然是一種方法,但是如果學(xué)霸的答案太難抄了呢?那我們能不能學(xué)一下學(xué)霸備考的方法?
首先我們很確定的知道,建造一個(gè)和人腦一樣強(qiáng)大的電腦是可能的——我們的大腦就是證據(jù)。如果大腦太難完全模擬,那么我們可以模擬演化出大腦的過程。事實(shí)上,就算我們真的能完全模擬大腦,結(jié)果也就好像照抄鳥類翅膀的拍動(dòng)來造飛機(jī)一樣——很多時(shí)候最好的設(shè)計(jì)機(jī)器的方式并不是照抄生物設(shè)計(jì)。
所以我們可不可以用模擬演化的方式來造強(qiáng)人工智能呢?這種方法叫作“基因算法”,它大概是這樣的:建立一個(gè)反復(fù)運(yùn)作的表現(xiàn)/評(píng)價(jià)過程,就好像生物通過生存這種方式來表現(xiàn),并且以能否生養(yǎng)后代為評(píng)價(jià)一樣。一組電腦將執(zhí)行各種任務(wù),最成功的將會(huì)“繁殖”,把各自的程序融合,產(chǎn)生新的電腦,而不成功的將會(huì)被剔除。經(jīng)過多次的反復(fù)后。這個(gè)自然選擇的過程將產(chǎn)生越來越強(qiáng)大的電腦。而這個(gè)方法的難點(diǎn)是建立一個(gè)自動(dòng)化的評(píng)價(jià)和繁殖過程,使得整個(gè)流程能夠自己運(yùn)行。
這個(gè)方法的缺點(diǎn)也是很明顯的,演化需要經(jīng)過幾十億年的時(shí)間,而我們卻只想花幾十年時(shí)間。
3)讓電腦來解決這些問題
如果抄學(xué)霸的答案和模擬學(xué)霸備考的方法都走不通,那就干脆讓考題自己解答自己吧。這種想法很無厘頭,確實(shí)最有希望的一種。
總的思路是我們建造一個(gè)能進(jìn)行兩項(xiàng)任務(wù)的電腦——研究人工智能和修改自己的代碼。這樣它就不只能改進(jìn)自己的架構(gòu)了,我們直接把電腦變成了電腦科學(xué)家,提高電腦的智能就變成了電腦自己的任務(wù)。
以上這些都會(huì)很快發(fā)生
硬件的快速發(fā)展和軟件的創(chuàng)新是同時(shí)發(fā)生的,強(qiáng)人工智能可能比我們預(yù)期的更早降臨,因?yàn)椋?/p>
1)指數(shù)級(jí)增長(zhǎng)的開端可能像蝸牛漫步,但是后期會(huì)跑的非???/p>
強(qiáng)人工智能到超人工智能之路
-速度。腦神經(jīng)元的運(yùn)算速度最多是200赫茲,今天的微處理器就能以2G赫茲,也就是神經(jīng)元1000萬倍的速度運(yùn)行,而這比我們達(dá)成強(qiáng)人工智能需要的硬件還差遠(yuǎn)了。大腦的內(nèi)部信息傳播速度是每秒120米,電腦的信息傳播速度是光速,差了好幾個(gè)數(shù)量級(jí)。
- 容量和儲(chǔ)存空間。人腦就那么大,后天沒法把它變得更大,就算真的把它變得很大,每秒120米的信息傳播速度也會(huì)成為巨大的瓶頸。電腦的物理大小可以非常隨意,使得電腦能運(yùn)用更多的硬件,更大的內(nèi)存,長(zhǎng)期有效的存儲(chǔ)介質(zhì),不但容量大而且比人腦更準(zhǔn)確。
- 可靠性和持久性。電腦的存儲(chǔ)不但更加準(zhǔn)確,而且晶體管比神經(jīng)元更加精確,也更不容易萎縮(真的壞了也很好修)。人腦還很容易疲勞,但是電腦可以24小時(shí)不停的以峰值速度運(yùn)作。
軟件上:
- 可編輯性,升級(jí)性,以及更多的可能性。和人腦不同,電腦軟件可以進(jìn)行更多的升級(jí)和修正,并且很容易做測(cè)試。電腦的升級(jí)可以加強(qiáng)人腦比較弱勢(shì)的領(lǐng)域——人腦的視覺元件很發(fā)達(dá),但是工程元件就挺弱的。而電腦不但能在視覺元件上匹敵人類,在工程元件上也一樣可以加強(qiáng)和優(yōu)化。
通過自我改進(jìn)來達(dá)成強(qiáng)人工智能的人工智能,會(huì)把“人類水平的智能”當(dāng)作一個(gè)重要的里程碑,但是也就僅此而已了。它不會(huì)停留在這個(gè)里程碑上的。考慮到強(qiáng)人工智能之于人腦的種種優(yōu)勢(shì),人工智能只會(huì)在“人類水平”這個(gè)節(jié)點(diǎn)做短暫的停留,然后就會(huì)開始大踏步向超人類級(jí)別的智能走去。
所以,當(dāng)人工智能開始朝人類級(jí)別智能靠近時(shí),我們看到的是它逐漸變得更加智能,就好像一個(gè)動(dòng)物一般。然后,它突然達(dá)到了最愚笨的人類的程度,我們到時(shí)也許會(huì)感慨:“看這個(gè)人工智能就跟個(gè)腦殘人類一樣聰明,真可愛。”
但問題是,從智能的大局來看,人和人的智能的差別,比如從最愚笨的人類到愛因斯坦的差距,其實(shí)是不大的。所以當(dāng)人工智能達(dá)到了腦殘級(jí)別的智能后,它會(huì)很快變得比愛因斯坦更加聰明:
從這邊開始,這個(gè)話題要變得有點(diǎn)嚇人了。我在這里要提醒大家,以下所說的都是大實(shí)話——是一大群受人尊敬的思想家和科學(xué)家關(guān)于未來的誠(chéng)實(shí)的預(yù)測(cè)。你在下面讀到什么離譜的東西的時(shí)候,要記得這些東西是比你我都聰明很多的人想出來的。
像上面所說的,我們當(dāng)下用來達(dá)成強(qiáng)人工智能的模型大多數(shù)都依靠人工智能的自我改進(jìn)。但是一旦它達(dá)到了強(qiáng)人工智能,即使算上那一小部分不是通過自我改進(jìn)來達(dá)成強(qiáng)人工智能的系統(tǒng),也會(huì)聰明到能夠開始自我改進(jìn)。
現(xiàn)在關(guān)于人工智能什么時(shí)候能達(dá)到人類普遍智能水平還有爭(zhēng)議。對(duì)于數(shù)百位科學(xué)家的問卷調(diào)查顯示他們認(rèn)為強(qiáng)人工智能出現(xiàn)的中位年份是2040年——距今只有25年。這聽起來可能沒什么,但是要記住,很多這個(gè)領(lǐng)域的思想家認(rèn)為從強(qiáng)人工智能到超人工智能的轉(zhuǎn)化會(huì)快得多。以下的情景很可能會(huì)發(fā)生:一個(gè)人工智能系統(tǒng)花了幾十年時(shí)間到達(dá)了人類腦殘智能的水平,而當(dāng)這個(gè)節(jié)點(diǎn)發(fā)生的時(shí)候,電腦對(duì)于世界的感知大概和一個(gè)四歲小孩一般;而在這節(jié)點(diǎn)后一個(gè)小時(shí),電腦立馬推導(dǎo)出了統(tǒng)一廣義相對(duì)論和量子力學(xué)的物理學(xué)理論;而在這之后一個(gè)半小時(shí),這個(gè)強(qiáng)人工智能變成了超人工智能,智能達(dá)到了普通人類的17萬倍。
這個(gè)級(jí)別的超級(jí)智能不是我們能夠理解的,就好像蜜蜂不會(huì)理解凱恩斯經(jīng)濟(jì)學(xué)一樣。在我們的語(yǔ)言中,我們把130的智商叫作聰明,把85的智商叫作笨,但是我們不知道怎么形容12952的智商,人類語(yǔ)言中根本沒這個(gè)概念。
但是我們知道的是,人類對(duì)于地球的統(tǒng)治教給我們一個(gè)道理——智能就是力量。也就是說,一個(gè)超人工智能,一旦被創(chuàng)造出來,將是地球有史以來最強(qiáng)大的東西,而所有生物,包括人類,都只能屈居其下——而這一切,有可能在未來幾十年就發(fā)生。
想一下,如果我們的大腦能夠發(fā)明Wifi,那么一個(gè)比我們聰明100倍、1000倍、甚至10億倍的大腦說不定能夠隨時(shí)隨地操縱這個(gè)世界所有原子的位置。那些在我們看來超自然的,只屬于全能的上帝的能力,對(duì)于一個(gè)超人工智能來說可能就像按一下電燈開關(guān)那么簡(jiǎn)單。防止人類衰老,治療各種不治之癥,解決世界饑荒,甚至讓人類永生,或者操縱氣候來保護(hù)地球未來的什么,這一切都將變得可能。同樣可能的是地球上所有生命的終結(jié)。
當(dāng)一個(gè)超人工智能出生的時(shí)候,對(duì)我們來說就像一個(gè)全能的上帝降臨地球一般。
這時(shí)候我們所關(guān)心的就是